
The reproducibility of a validated analytical method may require
reassessment because of various reasons, such as the transfer
between laboratories or companies, changes in the instruments or
software platforms (or both), or changes in critical reagents, among
others. This paper is a demonstration of an assay bridging study in
evaluating reproducibility. The approach is simple but very
informative and offers many advantages over existing approaches.

Introduction

It is well known that selective and sensitive analytical methods
for the quantitative evaluation of drugs and their metabolites
(analytes) are critical for the successful conduct of preclinical and
clinical pharmacology studies. A validated analytical method is
often modified to suit the requirement of the laboratory per-
forming the assay. This can occur in all phases of drug develop-
ment. During the course of development, an analytical method
may require changes to support specific studies, and, as a result,
different strategies may be needed to demonstrate the satisfactory
performance of the assay. These strategies are classified into three
categories: full-validation, partial-validation, and cross-validation
(1). A full-validation may be needed when developing and imple-
menting an analytical method for the first time or for a new drug
entity, or when adding new metabolites into an existing assay for
quantitation. A cross-validation may be acceptable when two or
more analytical methods are used to generate data within the
same study or across different studies, or when the comparison is
for the revised method to the original validated method. A cross-
validation could also be acceptable when data are generated using
different analytical techniques in different studies or generated at
more than one site or laboratory. A partial-validation may be ade-
quate if the validation is for the modified version of an already val-
idated method. Typical method changes that fall into this
category include (1): transfers between laboratories/analysts;
changes in detection system, matrix within specimen (plasma to
urine), sampling processing procedure, species within matrix (rat

plasma to mouse plasma), and instrument or software platform
(or both); or demonstrations of an analyte in the presence of con-
comitant medications/specific metabolites. Per the FDA guide-
lines (1), one of the fundamental parameters for these
revalidations is the reproducibility of the method. In other words,
agreement in the results obtained by the method before and after
the change need to be confirmed. 

Consider an assay bridging study, in which a new assay was
developed to replace the current assay. Agreement was to be
assessed by having each assay test a common sample set ranging
in relative potency from 0.4 to 3.2. For this purpose, 32 paired
samples across the entire selected potency range were tested. It
was therefore important to know how the concordance of these
two assays should be determined. Accepting the new assay as con-
cordant with the current assay, when in fact they do not agree,
would mostly likely lead to an incorrect decision regarding the
disposition of batches tested by the new assay. This increases
manufacturing costs and possibly puts the public health at risk.
Wrongly concluding that the two assays disagree, when in fact
they are concordant, simply means that the lab needs to re-opti-
mize the new assay. Although this could be a time-consuming
activity, it is more cost effective than needlessly investigating
out-of-specification occurrences or recalling product from the
market. 

The agreement problem has a long history and can be traced
back over 100 years to Pearson, who proposed the correlation
coefficient to measure agreement. The existing approaches can be
classified into three categories. 

The first category is the hypothesis testing type approach such
as the regression analysis by testing the departure from the per-
fect agreement (i.e., intercept = 0 and slope = 1). This type of
approach depends on the residual variance, which can reject a
reasonably good agreement when the residual errors are small
but accept a poor agreement when the residual errors are large. 

The second category is an index approach, such as the intra-
class correlation coefficient, the concordance correlation coeffi-
cient, and an improved concordance correlation coefficient (4). In
assessing agreement, both Lin (5) and Liao (4) assumed observa-
tions from a bivariate normal distribution with a fixed mean and
constant covariance. However, the mean values at different
potency levels in the assay bridging study were different, which is
usually the case in real examples. Therefore, current indices on
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agreement are not appropriate here. Furthermore, any index is
very sensitive to the data range. Usually, only one single index is
unacceptable to measure the agreement (3). When an index indi-
cates a poor agreement, there is no clue what went wrong. In
addition, there are no guidelines for defining an acceptable range
of values for an agreement index. For poor agreement results,
people in practice would like to know what went wrong and what
the biases [fixed or proportional (or both) biases] were. Any agree-
ment index cannot answer these questions. 

The third category is a graphical approach. Bland and Altman
(2) proposed a mean-difference graphic plot that plots the differ-
ence against the mean of the two measurements along with the
95% confidence limits of the difference. This approach is a step in
the right direction. It evaluates the agreement in each individual
level; it is simple. However, this method is not appropriate when
a mixture of fixed, proportional bias, and proportional error
occurs (6). 

When there is a fixed or proportional bias (or both) between
these two measurements, the mean from these two measure-
ments is not a good metric for the true value. In addition, the
mean of the two measurements used in their approach is always
a random variable even if one of the two measurements is a “gold”
standard. The variance of the mean from the two measurements
can be larger than the variance of the difference from these two
measurements. The simple 95% confidence interval of the differ-
ence will not give much information about the concordance of
two methods because the confidence limits will cover 95% of all
the differences. When a poor agreement conclusion is reached,
any bias, which is a very important practical issue, cannot be
assessed directly by this approach. 

Based on the previously mentioned arguments, any new
method in evaluating the concordance should be very informa-
tive. When given a poor concordance, it should easily indicate
what went wrong and what the biases [fixed or proportional (or
both) biases] were so that a calibration can be implemented if
needed. In the next section, an approach is described in detail
through the data analysis from an assay bridging study to evaluate
the reproducibility.

Assay Bridging Study

In practice, a simple measure of agreement for each individual
pair is preferred. An obvious starting point is the difference
between measurements for each pair. That is to say, we can 
judge the agreement of two measurement methods by deriving
an agreement interval and then showing that the difference 
of paired measurements falls within the specified interval. In
other words, an agreement interval (∆) is defined, and a pair of
measurements is claimed to be “in agreement” at a specified level
if their difference is within the interval. This is similar to inter-
preting “agreement” as an “in-control” process, in which being
“in-control” occurs if no observation falls outside the limits of a
Shewhart control chart (7). That means that two measurement
methods agree only if all the paired differences fall within the
agreement interval (∆). The graphical description of this
approach is in Figure 1. 

Consider the assay bridging example in the Introduction. A new
assay was developed to replace the existing relative potency assay.
The goal of this study was to assess the concordance of these two
assays. For this purpose, 32 pairs of measurements from the two
assays were chosen. The range for the current relative potency

Figure 1. Graphical description of the quality control type approach.
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Figure 2. Agreement scatterplot of log(current) and log(replacement). Dotted
line, perfect agreement line log(current) = log(replacement); solid line, regres-
sion line.

Figure 3. Concordance assessment. Dotted line, perfect agreement line; solid
line, agreement limits. Left graph, difference in log-scale; right graph, %dif-
ference in raw scale.



assay was 0.4 to 3.2. Therefore, eight samples (0.4, 0.8, 1.2, 1.6,
2.0, 2.4, 2.8, and 3.2) were created that spanned this range. These
eight samples were divided into four aliquots each and labeled as
A, B, C, or D for a total of 32 samples. A single reportable result
was generated for each of the 32 samples of both the current assay
and the replacement assay. The results were paired together for
analysis. Scatter plot of the data in a log-scale is shown in Figure
2, where the dotted line is the perfect agreement line.

To assess the agreement of two assays, the agreement window
needs to be constructed. Using equations 2 and 3 (see Appendix
A), â0 = –0.145, b̂0 = 1.037, and σ̂ = 0.051 = 5.1%. Based on this
determination of σ and 31 degrees of freedom, the values for
lower and upper agreement limits, as defined in equation 1 of
Appendix A, were calculated to be –0.1465 and 0.1465, respec-
tively. That is, ∆ = (–0.1465, 0.1465) in the log-scale and the
agreement interval was (–13.627, 15.777) in terms of the percent
potency difference in raw scale. To visually interpret the results,
the arithmetic differences of log(replacement) – log(current)
were plotted against the observational numbers in the left graph
of Figure 3, and the percent potency differences were plotted
against the observation numbers in the right graph of Figure 3.
The figures indicate that there are a total of 17 of 32 values out-
side the agreement interval which correspond to samples 3A, 5A,
7A, 8A, 3B, 4B, 6B, 7B, 8B, 2C, 3C, 5C, 6C, 3D, 4D, 6D, and 8D.
Therefore, the two assays did not show agreement. 

Even though there are values outside the calculated agreement
intervals, Figures 2 and 3 clearly indicate that there is a constant
relative bias between the two assays. These figures all indicate
that the replacement assay produces a lower reportable value
than the current assay, with the exception of one sample, 1B.
Please note that sample 1B is a kind of “outlier” relative to all
remaining samples. However, it does not induce any bias between
the two assays relative to that of the remaining samples. To truly
assess the bias, all samples except sample 1B, were used again in
equation 3 (Appendix A), which gives â0 = –0.148 and b̂0 = 1.027.
The log-bias can be best represented by the equation –0.148 +
0.027 × X, where X represents the log-value for the current assay.
Because the log-value of interest for the current assay ranges
approximately –1.0 to 1.0, as indicated in Figure 2, the propor-
tional log-bias 0.027 × X is relatively small compared with the
fixed log-bias of –0.148. For example, when log-value for the cur-
rent assay = –1 (the raw reportable value 0.37), the predicted log-
value for the replacement assay is –0.148 + 1.027 × (–1) = –1.175
(raw value is 0.31, thus, %bias = –16.2%). When the log-value for
the current assay is 1 (the raw scale reportable value is 2.72), the
predicted log-value for the replacement assay is 0.879 (the raw
value is 2.41, thus, %bias = –11.4%). If the proportional bias is
ignored, the percent bias is estimated to be 100 × [exp(–0.148) –
1]% = –13.8% across the entire range of raw reportable values. As
a result, the relative bias between the two assays can be consid-
ered fixed and corrected with a constant percent offset value. In
terms of the relative percent difference, the replacement assay
gives a value lower than that of the current assay by 13.8%. In
other words, to correct for this offset, multiply the replacement
assay by exp(0.148) = 1.16. Using equation 9 (Appendix A), the
95% confidence interval of the fixed bias is (–0.156, –0.140) in
terms of the arithmetic difference in the log-scale (13.07, 14.40)
in terms of the relative percent potency difference in the raw

scale, and (1.15, 1.17) in terms of the multiply factor. 

Conclusion

In this paper, a simple but informative method was detailed in
the data analysis for an assay bridging study to assess concor-
dance. This approach is similar in spirit to the concept of deter-
mining if a process is in control through the use of a Shewhart
control chart. The proposed method for assessing concordance
overcomes the drawbacks and offers many improvements over
Bland and Altman’s (2) graphical approach. It uses an interval to
evaluate each individual difference and can easily catch any
existing bias (fixed, proportional, or both). Given a poor concor-
dance conclusion, the proposed approach clearly indicates what
type of bias exists and provides a way to estimate it for calibration
purposes, which is the most important issue for practitioners. 

The approach in this paper has other advantages as well. For
example, in an animal potency assay transfer (or bridging) study,
the ED50 obtained from a Probit analysis is often used to assess
the agreement between two laboratories (assays). However, this
approach generally requires a large number of animals. Using the
approach in this paper, the original observations [e.g., optical den-
sities (OD)] can be used instead to assess the agreement of the two
laboratories (assays). Therefore, the number of animals required
to evaluate concordance is greatly reduced because many more
OD measurements are obtained per assay run.

Appendix A. Statistical Formula

Let (Xi, Yi); i = 1…n, be the n pairs of observations, which might
represent reportable values or transformed values such as the log-
transformed values. Both X and Y contain measurement error.
The agreement interval (∆) is defined as follows:

Eq. 1

where t1–α/2,n–1 is the 100 × (1 – α/2)th quantile of a t-distribution
with degrees of freedom n – 1 and:

Eq. 2

Eq. 3

and 

Eq. 4

Eq. 5
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Eq. 6

Eq. 7

If the two measurement methods are discordant, then bias
information may be needed to calibrate the two methods. the bias
can be assessed by:

Eq. 8

where a0 is the fixed bias and (b0 – 1) × X is the proportional bias.
The 100 × (1 – γ)% confidence interval for the fixed bias is:

Eq. 9

where zγ/2 is the 100 × (γ/2)th quantile of a standardized normal
distribution

Eq. 10

Eq. 11

Eq. 12

Similiarly, the 100 × (1 – γ)% confidence interval for the pro-
portional bias is:

Eq. 13

where

Eq. 14

and

Eq. 15
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